A relative evaluation of multiclass image classification by support vector machines
نویسندگان
چکیده
منابع مشابه
Fast Image Classification with Reduced Multiclass Support Vector Machines
Image classification is intrinsically a multiclass, nonlinear classification task. Support Vector Machines (SVMs) have been successfully exploited to tackle this problem, using one-vs-one or one-vs-all learning schemes to enable multiclass classification, and kernels designed for image classification to handle nonlinearities. To classify an image at test time, an SVM requires matching it agains...
متن کاملMulticlass Proximal Support Vector Machines
This article proposes the multiclass proximal support vector machine (MPSVM) classifier, which extends the binary PSVM to the multiclass case. Unlike the one-versus-rest approach that constructs the decision rule based on multiple binary classification tasks, the proposed method considers all classes simultaneously and has better theoretical properties and empirical performance. We formulate th...
متن کاملEnsemble Approaches of Support Vector Machines for Multiclass Classification
Support vector machine (SVM) which was originally designed for binary classification has achieved superior performance in various classification problems. In order to extend it to multiclass classification, one popular approach is to consider the problem as a collection of binary classification problems. Majority voting or winner-takes-all is then applied to combine those outputs, but it often ...
متن کاملCustomer Level Classification Model Using Ordinal Multiclass Support Vector Machines*
Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, howeve...
متن کاملMulticlass Classification with Multi-Prototype Support Vector Machines
Winner-take-all multiclass classifiers are built on the top of a set of prototypes each representing one of the available classes. A pattern is then classified with the label associated to the most ‘similar’ prototype. Recent proposal of SVM extensions to multiclass can be considered instances of the same strategy with one prototype per class. The multi-prototype SVM proposed in this paper exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2004
ISSN: 0196-2892
DOI: 10.1109/tgrs.2004.827257